Joint User Association and Interference Mitigation for D2D-Enabled Heterogeneous Cellular Networks

نویسندگان

  • Tianqing Zhou
  • Yongming Huang
  • Luxi Yang
چکیده

The heterogeneous cellular networks (HCNs) with device-to-device (D2D) communications have been a promising solution to cost-efficient delivery of high data rates. A key challenge in such D2D-enabled HCNs is how to design an effective association scheme with D2D model selection for load balancing. Moreover, the offloaded users and D2D receivers (RXs) would suffer strong interference from BSs, especially from high-power BSs. Evidently, a good association scheme should integrate with interference mitigation. Thus, we first propose an effective resource partitioning strategy that can mitigate the interference received by offloaded users from high-power BSs and the one received by D2D RXs from BSs. Based on this, we then design a user association scheme for load balancing, which jointly considers user association and D2D model selection to maximize network-wide utility. Considering that the formulated problem is in a nonlinear and mixted-integer form and hard to tackle, we adopt a dual decomposition method to develop an efficient distributed algorithm. Simulation results show that the proposed scheme provides a load balancing gain and a resource partitioning gain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks

Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...

متن کامل

On the performance of interference cancelation in D2D-enabled cellular networks

Device-to-device (D2D) communication underlaying cellular networks is a promising technology to improve network resource utilization. In D2D-enabled cellular networks, the interference among spectrum-sharing links is more severer than that in traditional cellular networks, which motivates the adoption of interference cancellation (IC) techniques at the receivers. However, to date, how IC can af...

متن کامل

Cognitive Spectrum Access in Device-to-Device (D2D)-Enabled Cellular Networks

Cognitive spectrum access (CSA) in in-band D2Denabled cellular networks is a potential feature that can promote efficient resource utilization and interference management among co-existing cellular and D2D users. In this article, we first outline the challenges in resource allocation posed by the coexistence of cellular and D2D users. Next, we provide a qualitative overview of the existing reso...

متن کامل

Femtocaching assisted multi-source D2D content delivery in cellular networks

The influxes of diversified services and mass data lead to exponential growth of traffic load in mobile cellular networks. Cache-enabled device-to-device (D2D) communication provides a general framework to alleviate this situation. In contrast to previous single-source D2D models, this paper investigates a comprehensive content delivery framework based on a three-tier heterogeneous network (Het...

متن کامل

Joint Mode Selection and Resource Allocation Using Evolutionary Algorithm for Device-to-Device Communication Underlaying Cellular Networks

Device-to-Device (D2D) has been a potential technology to improve the sum-rate of cellular networks, especially in local communication. By reusing the resource of cellular user equipment (UE), D2D can enhance the spectrum efficiency, but at the cost of introducing extra co-channel interference. In this paper, we adopt a resource reusing mechanism in which multiple D2D pairs can share multiple r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • MONET

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2016